即0.5ln(x^2+y^2)=arctan(y/x)
对x求导得到
0.5(2x+2y*y')/(x^2+y^2)= 1/(1+y^2/x^2) *(y/x)'
即
(2x+2y*y')/(x^2+y^2)=2x^2/(x^2+y^2) *(x *y'-y)/x^2
于是
x+y*y'=2(x *y'-y)
即
(2x-y)*y'=x+2y
所以
dy/dx=(x+2y)/(2x-y)
即0.5ln(x^2+y^2)=arctan(y/x)
对x求导得到
0.5(2x+2y*y')/(x^2+y^2)= 1/(1+y^2/x^2) *(y/x)'
即
(2x+2y*y')/(x^2+y^2)=2x^2/(x^2+y^2) *(x *y'-y)/x^2
于是
x+y*y'=2(x *y'-y)
即
(2x-y)*y'=x+2y
所以
dy/dx=(x+2y)/(2x-y)