解题思路:(1)取三对对应的x,y值代入y=ax2+bx+c,求得函数的解析式,问题的解.
(2)若将抛物线m,绕原点O顺时针旋转180°得n,则m和n关于原点O成中心对称,利用中心对称的性质问题的解.
(3)由图形可知原点O是NM的中点,也是FB的中点.即NM,FB两条对角线相互平分,所以NFMB的形状可判定.
(1)①抛物线开口向上;
②抛物线的对称轴为x=1;
③抛物线的顶点M(1,-4)等.
(2)抛物线m,n如图1所示,并易得
A(-1,0),B(3,0),C(0,-3),
设抛物线m的解析式为y=a(x+1)(x-3),
已知抛物线过C(0,-3),则有:
-3=a(0+1)(0-3),
∴a=1,
∴抛物线m的解析式为:y=x2-2x-3.
若将抛物线m,绕原点O顺时针旋转180°得n,则m和n关于原点O成中心对称,
∴抛物线n的顶点是N(-1,4),和x轴的交点坐标是E(1,0),F(-3,0),
∴抛物线n的解析式为:y=-(x+1)2+4,
即:y=-x2-2x+3;
(3)如图2,四边形NFMB是平行四边形.
理由:
∵N与M关于原点中心对称,
∴原点O是NM的中点,同理,原点O也是FB的中点.
∴四边形NFMB是平行四边形.
点评:
本题考点: 二次函数综合题.
考点点评: 本题考查了二次函数解析式的确定、二次函数图象的性质,函数图象上点的坐标意义、图象关于原点成中心对称解析式的求解,称综合性强.