1、(y+2)²=(3y-1)
y²+4y+4-3y+3=0
y²+y+7=0
y²+y+(1/2)²=-7+1/4
(y+1/2)²=-27/4
y+1/2=±3/2√3i
y=(-1±3√3i)/2
2、Δ=3²-4×2=9-8=1>0
所以原方程有两个不相等的实数根.
1、(y+2)²=(3y-1)²
(y+2)²-(3y-1)²=0
(y+2+3y-1)(y+2-3y+1)=0
(4y+1)(-2y+3)=0
y₁=-1/4、y₂=3/2
1、(y+2)²=(3y-1)
y²+4y+4-3y+3=0
y²+y+7=0
y²+y+(1/2)²=-7+1/4
(y+1/2)²=-27/4
y+1/2=±3/2√3i
y=(-1±3√3i)/2
2、Δ=3²-4×2=9-8=1>0
所以原方程有两个不相等的实数根.
1、(y+2)²=(3y-1)²
(y+2)²-(3y-1)²=0
(y+2+3y-1)(y+2-3y+1)=0
(4y+1)(-2y+3)=0
y₁=-1/4、y₂=3/2