解题思路:先证明n=1时,结论成立,再设当n=k(k∈N*)时,等式成立,利用假设证明n=k+1时,等式成立即可.
证明:(1)当n=1时,左边=1×2×3=6,右边=[1×2×3×4/4=6=左边,∴等式成立.
(2)设当n=k(k∈N*)时,等式成立,
即1×2×3+2×3×4+…+k×(k+1)×(k+2)=
k(k+1)(k+2)(k+3)
4].
则当n=k+1时,
左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
=
k(k+1)(k+2)(k+3)
4+(k+1)(k+2)(k+3)
=(k+1)(k+2)(k+3)(
k
4+1)=
(k+1)(k+2)(k+3)(k+4)
4
=
(k+1)(k+1+1)(k+1+2)(k+1+3)
4.
∴n=k+1时,等式成立.
由(1)、(2)可知,原等式对于任意n∈N*成立.
点评:
本题考点: 数学归纳法.
考点点评: 本题考查数学归纳法证明等式问题,证题的关键是利用归纳假设证明n=k+1时,等式成立,属于中档题.