1/2[(1-1/3)+(1/2-1/4)+(1/3-1/5)+.+(1/n-1/(n+2))]
=1/2(1-1/3+1/2-1/4+1/3-1/5+.+1/n-1/n+2)
=1/2(1+1/2-1/(n+1)-1/(n+2))
=1/2(3/2-1/(n+1)-1/(n+2))
1/2[(1-1/3)+(1/2-1/4)+(1/3-1/5)+.+(1/n-1/(n+2))]
=1/2(1-1/3+1/2-1/4+1/3-1/5+.+1/n-1/n+2)
=1/2(1+1/2-1/(n+1)-1/(n+2))
=1/2(3/2-1/(n+1)-1/(n+2))