∫1/(X+1)(x+3) dx
=∫dx/2(x+1)-∫dx/2(x+3)
=1/2*∫d(x+1)/(x+1)-1/2*∫d(x+3)/(x+3)
=ln(x+1)/2-ln(x+3)/2+C
=1/2*[ln(x+1)-ln(x+3)]+C
=ln[(x+1)/(x+3)]/2+C 注意分母2不在ln内,在ln外
∫1/(X+1)(x+3) dx
=∫dx/2(x+1)-∫dx/2(x+3)
=1/2*∫d(x+1)/(x+1)-1/2*∫d(x+3)/(x+3)
=ln(x+1)/2-ln(x+3)/2+C
=1/2*[ln(x+1)-ln(x+3)]+C
=ln[(x+1)/(x+3)]/2+C 注意分母2不在ln内,在ln外