证明:∵BD平分∠ABC,
∴∠ABD=∠EBD.
又∵AB=EB,BD=BD,
∴△ABD≌△EBD.
∴∠A=∠BED,AD=ED.
又∵AD=DC.
∴DE=DC,
∴∠C=∠DEC.
∵∠BED+∠DEC=180°,
∴∠A+∠C=180°,
即∠A与∠C互补.
∠A+∠C=180°
证明:∵BD平分∠ABC,
∴∠ABD=∠EBD.
又∵AB=EB,BD=BD,
∴△ABD≌△EBD.
∴∠A=∠BED,AD=ED.
又∵AD=DC.
∴DE=DC,
∴∠C=∠DEC.
∵∠BED+∠DEC=180°,
∴∠A+∠C=180°,
即∠A与∠C互补.
∠A+∠C=180°