y=sinx+cosx+sinxcosx
=sinx+cosx+[(sinx+cosx)^2-1]/2
令t=sinx+cosx=√2sin(x+π/4)∈[-√2,√2]
则y=t+(t^2-1)/2=(t+1)^2/2-1
因为t∈[-√2,√2]
所以-1≤y≤(√2+1)^2/2-1=√2+1/2
y=sinx+cosx+sinxcosx
=sinx+cosx+[(sinx+cosx)^2-1]/2
令t=sinx+cosx=√2sin(x+π/4)∈[-√2,√2]
则y=t+(t^2-1)/2=(t+1)^2/2-1
因为t∈[-√2,√2]
所以-1≤y≤(√2+1)^2/2-1=√2+1/2