=lim(x→0) [(1+x)^x]·[ln(1+x) + x/(1+x)] /2x
=lim(x→0) [(1+x)^x]· lim(x→0) [ln(1+x) + x/(1+x)] /2x
=1· lim(x→0) [ln(1+x) /2x + (x/(1+x) )/2x]
=lim(x→0) ln(1+x) /2x + lim(x→0) 1/(2·(1+x) )
=lim(x→0) x /2x + 1/2 【等价无穷小】
= 1
=lim(x→0) [(1+x)^x]·[ln(1+x) + x/(1+x)] /2x
=lim(x→0) [(1+x)^x]· lim(x→0) [ln(1+x) + x/(1+x)] /2x
=1· lim(x→0) [ln(1+x) /2x + (x/(1+x) )/2x]
=lim(x→0) ln(1+x) /2x + lim(x→0) 1/(2·(1+x) )
=lim(x→0) x /2x + 1/2 【等价无穷小】
= 1