因等差数列x+y=a1+b2
因等比数列x*y=a1*b2
原式得(x+y)^2/x*y
展开得x^2+2xy+y^2/xy
除完得x/y+2+y/x
=x/y+y/x+2
因x/y+y/x取值范围是(-∞,-2]∪[2,+∞],加上加得(-∞,0]∪[4,+∞]
因等差数列x+y=a1+b2
因等比数列x*y=a1*b2
原式得(x+y)^2/x*y
展开得x^2+2xy+y^2/xy
除完得x/y+2+y/x
=x/y+y/x+2
因x/y+y/x取值范围是(-∞,-2]∪[2,+∞],加上加得(-∞,0]∪[4,+∞]