解题思路:①根据对边对等角得到∠ABC=∠ACB,再结合角平分线的定义得到∠OBC=∠OCB,从而证明OB=OC;②首先根据全等三角形的判定和性质得到OA平分∠BAC,再根据等腰三角形的三线合一的性质得到直线AO垂直平分BC.
①∵在△ABC中,AB=AC,
∴∠ABC=∠BCA;
∵BD、CE分别平分∠ABC、∠BCA,
∴∠OBC=∠BCO;
∴OB=OC,
∴△OBC为等腰三角形.
②在△AOB与△AOC中.
∵
AB=AC
AO=AO
BO=CO,
∴△AOB≌△AOC(SSS);
∴∠BAO=∠CAO;
∴直线AO垂直平分BC.(等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合)
点评:
本题考点: 等腰三角形的判定与性质.
考点点评: 此题考查了等腰三角形的性质,综合利用了全等三角形的判定和角平分线的定义,对各知识点要能够熟练运用.