因为 (x1+x2+x3+……+xn)/n=5,所以
(4x1+4x2+4x3+……+4xn)/n=4(x1+x2+x3+……+xn)/n=20
因为S2=(x1-5)(x1-5)+(x2-5)(x2-5)+……+(xn-5)(xn-5)=0.025
所以s'2=(4x1-20)(4x1-20)+(4x2-20)(4x2-20)+……+(4xn-20)(4xn-20)=16(x1-5)(x1-5)+16(x2-5)(x2-5)+……+16(xn-5)(xn-5)=0.025*16=0.4
因为 (x1+x2+x3+……+xn)/n=5,所以
(4x1+4x2+4x3+……+4xn)/n=4(x1+x2+x3+……+xn)/n=20
因为S2=(x1-5)(x1-5)+(x2-5)(x2-5)+……+(xn-5)(xn-5)=0.025
所以s'2=(4x1-20)(4x1-20)+(4x2-20)(4x2-20)+……+(4xn-20)(4xn-20)=16(x1-5)(x1-5)+16(x2-5)(x2-5)+……+16(xn-5)(xn-5)=0.025*16=0.4