在 |*|_p 的单位球S^(n*n-1)上定义函数 f: S^(n*n-1)--> R^+, f(s) = |s|_q/|s|_p = |s|_q
因为 在|*|_p 的 S^(n*n-1)上 两个范数都>0, 所以定义是成立的,而且 f(S^(n*n-1)) 都>0. 因为 S^(n*n-1)紧,所以 存在 0< c1
在 |*|_p 的单位球S^(n*n-1)上定义函数 f: S^(n*n-1)--> R^+, f(s) = |s|_q/|s|_p = |s|_q
因为 在|*|_p 的 S^(n*n-1)上 两个范数都>0, 所以定义是成立的,而且 f(S^(n*n-1)) 都>0. 因为 S^(n*n-1)紧,所以 存在 0< c1