解题思路:(1)AB=AC,且∠BAC=90°,因此∠BAC=∠CAB=∠A=∠B=45°,也就能得出弧ED=弧DF,因此DE=DF,由于∠EAF=90°,那么EF就是圆的直径,那么∠EDF也是直角,因此△EDF也是个等腰直角三角形,所以△EDF∽△CAD∽△BAD∽△ABC,而△AEG,△DGF以及△EGD,△AFG可以通过对顶角和同弧所对的圆周角相等来得出相似,本题的相似三角形较多,只要能得出两组对应角相等的就都可以(前提是不全等);
(2)AD是等腰直角三角形斜边上的高,因此AD分成的两个小等腰直角三角形就全等,因为∠DFC是圆内接四边形AEDF的外角,因此∠DFC=∠AED,又有∠BAD=∠C=45°,且AD=DC,那么△AED≌△CFD,同理可证得△BDE≌△ADF,由△AED≌△CFD,我们可得出AE=FC,因此AC=AE+AF=AB.
(3)方法同(2)得出AE'=F'C后,AC+AE'=AF',即AB+AE'=AF',AB=AF'-AE'.
(1)△AEG∽△FDG,△AGF∽△EGD,△DEF∽△ABC(答案不唯一,只要正确都可以).
(2)△ABD≌△ACD;△BDE≌△ADF;△CDF≌△ADE;AE+AF=AB.
(3)AB=AF'-AE'.
证明:连接DF',
∵△ABC是等腰直角三角形,AD是斜边上的高
∴∠B=∠BAD=∠DCA=45°
∴∠E'AD=∠DCF'=135°
∵∠AE'D=∠CF'D,AD=DC
∴△E'AD≌△F'CD
∴AE'=CF',
∴AF'=AC+CF'=AE'+AC,
∵AB=AC
∴AB=AF'-AE'.
点评:
本题考点: 圆周角定理;全等三角形的判定;相似三角形的判定.
考点点评: 本题主要考查了圆周角定理,等腰直角三角形的性质,相似三角形、全等三角形的判定和性质等知识点.(2)(3)中根据全等三角形来得出线段相等是解题的关键.