原式=(b+c)^2-a^2=3bc.带入
(sinb+sinc)^2-sin(b+c)^2=3sinb*sinc
即(sinb)^+(sinc)^2-sinb*sinc
=2[(sinb*cosc)^2+(sinc*cosb)^2+2sinb*sinc*cosb*cosc]
=(sinb*cosc)^2+(sinc*cosb)^2+2sinb*sinc*cosb*cosc
(sinb)^+(sinc)^2-sinb*sinc-(sinb*cosc)^2+(sinc*cosb)^2
=(sinb*sinc)^2+(sinc*sinb)^2
=2(sinb*sinc*cosb*cosc)
(sinb*sinc)^2+(sinc*sinb)^2-2(sinb*sinc*cosb*cosc)=0
sinbsinc*sinb*sinc=sinb*sinc*cosb*cosc
我没有时间了,下面交给你自己罗