1)4(A(n+1))=4(Sn+1)-4Sn=(A(n+1)+1)^2-(An+1)^2,整理可得
(An+1)^2=(A(n+1)-1)^2
A(n+1)=An+2 or A(n+1)=-An因为为正项数列,所以后者舍去
S1=A1,得到A1=1,
所以An=2n-1
2)Bn=1/[(2n-1)(2n+1)],Tn=1/2[1-1/3+1/3-1/5+…+1/(2n-1)-1/(2n+1)]=n/(2n+1)
1)4(A(n+1))=4(Sn+1)-4Sn=(A(n+1)+1)^2-(An+1)^2,整理可得
(An+1)^2=(A(n+1)-1)^2
A(n+1)=An+2 or A(n+1)=-An因为为正项数列,所以后者舍去
S1=A1,得到A1=1,
所以An=2n-1
2)Bn=1/[(2n-1)(2n+1)],Tn=1/2[1-1/3+1/3-1/5+…+1/(2n-1)-1/(2n+1)]=n/(2n+1)