已知数列an为首项a1≠0,公差为d≠0的等差数列,求Sn=1/a1a2+1/a2a3+……+1/ana(n+1)
1个回答
sn=1/d(1/a1-1/a2+1/a2-1/a3+.+1/an-1/a(n+1))
=1/d(1/a1-1/a(n+1))
=nd/da1a(n+1)
=n/a1a(n+1)
相关问题
已知数列an为首项a1≠0,公差为d≠0的等差数列,求Sn=1/a1a2+1/a2a3+……+1/ana(n-1)
已知数列{an}为首项a1≠0,公差为d≠0的等差数列,求Sn=[1a1a2+1a2a3+…+1anan+1
已知数列{an}为首项为1的等差数列,其公差d≠0,且a1,a2,a5成等比数列.
已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn是数列{an}前n项的和,则2Sn+1
已知数列(an)的奇数项是公差为d1的等差数列,偶数是公差为d2的等差数列,Sn是数列an的前n项和,a1=1a2=2.
已知数列an是等差数列,且a3=0,S3=9,求数列an的通项公式 Sn=na1+n(n-1)*d/2 0=a1+2d
已知等差数列{an}的前n项和为Sn,公差d≠0,a1=1,且a1,a2,a7成等比数列.
数学难题解答已知{An}为等差数列,公差d>0,前n项和为Sn,A2A3=45,A1+A3=10 求(1)求An (2)
已知数列{an},若1/a1a2+1/a2a3+…+1/ana(n+1)=n/a1a(n+1),求证{an}为等差数列.
已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则Sn=______.