(I)由题设知 f(x)=
1
2 [1+cos(2x+
π
6 )] .令 2x+
π
6 =kπ,
所以函数y=f(x)图象对称轴的方程为 x=
kπ
2 -
π
12 (k∈Z).
(II) h(x)=f(x)+g(x)=
1
2 [1+cos(2x+
π
6 )]+1+
1
2 sin2x =
1
2 [cos(2x+
π
6 )+sin2x]+
3
2 =
1
2 (
3
2 cos2x+
1
2 sin2x)+
3
2 =
1
2 sin(2x+
π
3 )+
3
2 .
所以,最小正周期是T=π,值域[1,2]