解题思路:(Ⅰ)写出C1的焦点为F(0,[p/2]),代入抛物线C2方程即可求得p值,从而可得抛物线C1的方程及其准线方程;
(Ⅱ)任取点P(2t,t2),设过点P的C2的切线方程为y-t2=k(x-2t).联立切线方程与抛物线C2的方程,消掉y得x的二次方程,由相切得△=0,整理为关于k的二次方程,设PM,PN的斜率分别为k1,k2,由韦达定理可用t表示出m,根据m范围可得t2范围,由两点距离公式可得|OP|的范围;
(Ⅰ)C1的焦点为F(0,[p/2]),
所以[p/2]=0+1,p=2.
故C1的方程为x2=4y,其准线方程为y=-1.
(Ⅱ)任取点P(2t,t2),设过点P的C2的切线方程为y-t2=k(x-2t).
由
y−t2=k(x−2t)
y=
1
2x2+1,得x2-2kx+4tk-2t2+2=0.
由△=(2k)2-4(4tk-2t2+2)=0,化简得k2-4tk+2t2-2=0,
记PM,PN的斜率分别为k1,k2,则m=k1k2=2t2-2,
因为m∈[2,4],所以t2∈[2,3],
所以|OP|2=4t2+t4=(t2+2)2-4∈[12,21],
所以|OP|∈[2
3,
21].
点评:
本题考点: 直线与圆锥曲线的关系;抛物线的标准方程.
考点点评: 本题考查抛物线方程、直线方程及直线与抛物线的位置关系,本题中P点坐标设法运用了抛物线的参数方程,简化了运算,给解决问题提供了方便.