lg25+(2/3)lg8+lg5·lg20+lg22
=lg5^2+(2/3)lg2^3+lg5*lg(5×2^2)+lg2*lg2
=2lg5+3*(2/3)lg2+lg5(lg5+2lg2)=lg2*lg2
=2lg5+2lg2+lg5*lg5+2lg2lg5+lg2*lg2
=2(lg5+lg2)+(lg2+lg5)^2
=2lg10+(lg10)^2
=2+1=3
lg25+(2/3)lg8+lg5·lg20+lg22
=lg5^2+(2/3)lg2^3+lg5*lg(5×2^2)+lg2*lg2
=2lg5+3*(2/3)lg2+lg5(lg5+2lg2)=lg2*lg2
=2lg5+2lg2+lg5*lg5+2lg2lg5+lg2*lg2
=2(lg5+lg2)+(lg2+lg5)^2
=2lg10+(lg10)^2
=2+1=3