已知在△ABC中 ∠BAC=90° AD⊥BC于D CE平分∠ACB交AD于F FG平行于BC交AB于G AE=2 AB

1个回答

  • 过点F作FM⊥AC于M,过点G作GN⊥BC于N

    ∵CE平分∠ACB

    ∴∠ACE=∠BCE

    ∵AD⊥BC,FM⊥AC,CF=CF

    ∴△CDF全等于△CMF

    ∴DF=MF

    ∵GN⊥BC,AD⊥BC,FG∥BC

    ∴矩形FGND

    ∴DF=GN

    ∵AD⊥BC

    ∴∠CAD+∠ACB=90

    ∵∠BAC=90

    ∴∠B+∠ACB=90

    ∴∠B=∠CAD

    ∴△AFM全等于△BGN

    ∴BG=AF

    ∵∠DCF+∠CFD=90,∠ACF+∠AEC=90,∠ACE=∠BCF

    ∴∠CFD=∠AEC

    ∵∠CFD=∠AFE

    ∴∠AEC=∠AFE

    ∴AE=AF

    ∴BG=AE

    ∵AE=2,AB=7

    ∴EG=AB-AE-BG=7-2-2=3