设m=kn+r,
,设m,n为正整数且m为奇数,证明:若a为偶数,则a^m-1与a^+1互素
1个回答
相关问题
-
设A为n阶方阵,且A^2=A,证明(A+I)^m=I+((2^m)-1)),其中m为正整数
-
已知数列{an}满足;a1=m(m为正整数)a(n+1)=an/2(an为偶数),a(n+1)=3an+1(an为奇数)
-
证明:(a^n)^m=a^n*m (m,n为正整数)
-
设a,m,n为自然数,a>1.证明若a^m+1|a^n+1,那么m|n
-
若a=21−(−1)m(m为正整数),且a、b互为相反数,b、c互为倒数,则ab+bm-(b-c)2m的值为( )
-
若a=21−(−1)m(m为正整数),且a、b互为相反数,b、c互为倒数,则ab+bm-(b-c)2m的值为( )
-
一道数学命题证明若a^m=b^n,且a,b,m,n都为正整数,m,n互质,求证命题“必存在正整数t,使a=t^n,b=t
-
数列an满足a1=m(m为正整数)an+1= an/2(当an为偶数时) 3an+1(当an为奇数时)若A4=4,则m的
-
假设a、m、n为正整数,a>1,如果am-1|an-1,证明m|n
-
若m,n为正整数,且 lo g a m+lo g a (1+ 1 m )+lo g a (1+ 1 m+1 )+…+lo