求sinx的m次方与 cosx的n次方的乘积的不定积分,求sin(ax)*cos(bx)的不定积分

2个回答

  • Let Im,n=∫(sinx)^m*(cosx)^ndx

    then Im,n=(sinx)^(m+1)*(cosx)^(n-1)-

    ∫(sinx)[(sinx)^m*(cosx)^(n-1)]'dx

    =(sinx)^(m+1)*(cosx)^(n-1)-

    ∫[m(sinx)^m*(cosx)^n-(n-1)(sinx)^(m+2)*(cosx)^(n-1)]dx

    =(sinx)^(m+1)*(cosx)^(n-1)-mIm,n+(n-1)Im+2,n-2

    so (m+1)Im,n=(sinx)^(m+1)*(cosx)^(n-1)+(n-1)Im+2,n-2

    用此递推公式求解

    sin(ax)*cos(bx)

    =(1/2)*[sin(a+b)x+sin(a-b)x]

    so ∫sin(ax)*cos(bx)dx

    =-(1/2)*[cos(a+b)x/(a+b)+cos(a-b)x/(a-b)]+C