a=1/(2+√3) b=1/(2-√3)
∵ab=1/(4-3)=1
∴a=1/b (既a,b互为倒数)
等量代换 式1/(a+1)^2+1/(b+1)^2=1/[(1/b+1)^2]+1/(b+1)^2
=b^2/(b+1)^2+1/(b+1)^2
=(b^2+1)/(b+1)^2
分子,分母同时除以b^2得
=(1+1/b^2)/(1+1/b)^2
将 1/b=2-√3代入得
=[1+(2-√3)^2]/[1+2-√3]^2
=(1+7-4√3)/(12-6√3)
=(8-4√3)/(12-6√3)
=4(2-√3)/6(2-√3)
=2/3
该式的计算结果是2/3