(1)P(X=0)= (
6
10 ) 3 =
216
1000 =
27
125 ,P(X=20)=
C 13 •
3
10 •(
6
10 ) 2 =
324
1000 =
81
250 ,
所以P(X>20)=1-P(X=0)-P(X=20)=
23
50
(2)记甲在剩下的摸球机会中获得奖金总额为Y,则
P(Y=0)= (
6
10 ) 2 =
9
25 ,P(X=20)=
C 12 •
6
10 •
3
10 =
9
25
P(Y=40)= (
3
10 ) 2 =
9
100 ,P(Y=50)=
1
10 +
6
10 •
1
10 =
4
25 ,
P(Y=70)=
3
10 •
1
10 =
3
100
所以E(Y)=0×
9
25 +20×
9
25 +40×
9
100 +50×
4
25 +70×
3
100 =20.9
答:他在剩下的摸球机会中获得奖金的数学期望是20.9.