过A做AD垂直BC于D点,
因为AB=AC,所以BD=CD
AC^2=AD^2+CD^2
AP^2=AD^2+DP^2
所以AC^2=AP^2-DP^2+CD^2 =AP^2+(CD+DP)(CD-DP)
因为BD=CD(已证),所以AC^2=AP^2+(CD+DP)(BD-DP)
所以AC^2=AP^2+CP*BP
过A做AD垂直BC于D点,
因为AB=AC,所以BD=CD
AC^2=AD^2+CD^2
AP^2=AD^2+DP^2
所以AC^2=AP^2-DP^2+CD^2 =AP^2+(CD+DP)(CD-DP)
因为BD=CD(已证),所以AC^2=AP^2+(CD+DP)(BD-DP)
所以AC^2=AP^2+CP*BP