Sn=a(n+1)-1
S(n-1)=an-1
an=Sn-S(n-1)=a(n+1)-an
a(n+1)=2an
故{an}是公比为2的等比数列
an=a1*2^(n-1)=2^(n-1)
a(n+1)=2^n
bn=2^n/[a(n+1)][a(n+1)+1]=1/(2^n+1)
因bn
Sn=a(n+1)-1
S(n-1)=an-1
an=Sn-S(n-1)=a(n+1)-an
a(n+1)=2an
故{an}是公比为2的等比数列
an=a1*2^(n-1)=2^(n-1)
a(n+1)=2^n
bn=2^n/[a(n+1)][a(n+1)+1]=1/(2^n+1)
因bn