高数 极限 洛必达lim (3sinx-sin3x)/cx∧k=1求c,k.请问为什么不能用洛~解析上说不可用 洛必达的

1个回答

  • 为什么不能用洛~法则求解-------可以啊!以下用洛必达求该极限.

    lim (x→0)(3sinx-sin3x)/cx∧k=lim (x→0)(3cosx-3cos3x)/ckx^(k-1)

    =lim (x→0)(-3sinx+9sin3x)/ck(k-1)x^(k-2)=lim (x→0)(-3cosx+27cos3x)/ck(k-1)(k-2)x^(k-3)

    由于lim (x→0)(-3cosx+27cos3x)=-3+27=24≠0

    ∴lim (x→0)x^(k-3)≠0 k-3=0 k=3

    lim (x→0)(-3cosx+27cos3x)/ck(k-1)(k-2)x^(k-3)=24/6c=1

    c=4

    解析上说不可用 洛必达的前两条件都满足 问题可能出在第三个条件上--------这个解析显然有问题.作者过于谨慎了.也可以说作者没有吃透洛必达法则的精神.当k=3时不是就满足洛必达法则的第三个条件么.

    不过,这个题的正解应该是用泰勒展开式,因为相比用洛必达法则的工作量小.但这不能说用洛必达法则就不可解.-------也许原书的作者就是这个意思.