∫√[(1-x^2)/(1+x^2)]xdx
=(1/2)∫√[(1-x^2)/(1+x^2)dx^2
x^2=cosu
=(1/2)∫√[(1-cosu)/(1+cosu)] dcosu
=(1/2)∫[sin(u/2)/cos(u/2)]*(-sinu)du
=∫(sinu/2)^2du
=(1/2)∫(1-cosu)du
=(1/2)u+(1/2)sinu+C
=(1/2)arccos(x^2)+(1/2)√(1-x^2)+C
或
=(-1/2)arcsin(x^2)+(1/2)√(1-x^2)+C