如下图,设正方体ABCD-A1B1C1D1的棱长为2,
过点P作PQ∥BC1交C1D1于点Q,连接A1Q,
∵ P为棱AB的中点,
∴ A1P=A1Q=√ 5,PQ=BC1= 2√2,
∴COS ∠A1PQ= (A1P^2 + PQ^2 - A1Q^2) / (2A1P*·PQ)
=(5+8-5)/(2*√ 5*2√2)
=√ 10/5
如下图,设正方体ABCD-A1B1C1D1的棱长为2,
过点P作PQ∥BC1交C1D1于点Q,连接A1Q,
∵ P为棱AB的中点,
∴ A1P=A1Q=√ 5,PQ=BC1= 2√2,
∴COS ∠A1PQ= (A1P^2 + PQ^2 - A1Q^2) / (2A1P*·PQ)
=(5+8-5)/(2*√ 5*2√2)
=√ 10/5