1、∵OP在直径上,延长PO交圆与E
∴弧EAP=弧ECP
∵弧AB=弧CD
∴弧EAP-弧AB=弧ECP-弧CD
即弧AE=弧CE
∴∠APE=∠CPE
∴OP平分∠APC
2、成立,理由如下
证明:因为弧AB=弧CD,所以AB=CD
过点O作OM⊥AB,ON⊥CD,垂足分别为M、N
可得:OM=ON
可证:三角形OMP≌ 三角形ONP(HL)
所以∠OPM=∠OPN
即OP平分∠APC
3、做OE⊥AB
OF⊥CD
∵弧AB=弧CD
∴AB=CD
∴OE=OF
∵OP=OP
∴Rt△OEP≌Rt△OFP(HL)
∴∠EPO=∠FPO
∴OP平分∠APC