过D作DG‖BE;
则 EG/CE = BD/BC =1/3;
CE=3EG;
又∵CE=3AE ,
∴ EG = AE ;
即 AG=2AE;
∴ EF/DG = 1/2;
∵DG‖BE.
∴ DG/BE = CG/CE = (CE-EG)/CE = 2/3;
∴ BE/EF =(DG/BE)·(EF/DG) =3;
→ BF/EF = (BE-EF)/EF = (BE/EF)-1
=2
过D作DG‖BE;
则 EG/CE = BD/BC =1/3;
CE=3EG;
又∵CE=3AE ,
∴ EG = AE ;
即 AG=2AE;
∴ EF/DG = 1/2;
∵DG‖BE.
∴ DG/BE = CG/CE = (CE-EG)/CE = 2/3;
∴ BE/EF =(DG/BE)·(EF/DG) =3;
→ BF/EF = (BE-EF)/EF = (BE/EF)-1
=2