已知函数f(x)=4lnx-ax+[a+3/x](a≥0).

2个回答

  • 解题思路:(1)求导函数,确定函数的单调性,即可得到函数的极值;

    (2)存在x1,x2∈[[1/2],2],使f(x1)>g(x2),转化为在[[1/2],2]上f(x)的最大值大于g(x)的最小值,进而转化为求f(x)、g(x)在[[1/2],2]上的最大值、最小值问题.

    (1)f(x)的定义域为(0,+∞).

    当a=[1/2],f(x)=4lnx-ax+[a+3/x]=4lnx-[x/2]+[7/2x],

    ∴f′(x)=[4/x-

    1

    2-

    7

    2x2]=-

    (x-1)(x-7)

    2x

    令f′(x)>0,∵x>0,∴可得1<x<7,令f′(x)<0,

    ∵x>0,∴可得0<x<1或x>7

    ∴函数的单调减区间为(0,1),(7,+∞),单调增区间为(1,7)

    ∴x=1时,函数取得极小值为3;x=7时,函数确定极大值为4ln7-3;

    (2)f′(x)=

    -ax2+4x-(a+3)

    x2,(x>0),令h(x)=-ax2+4x-(a+3),

    若a≥1,则△=42-4(-a)[-(a+3)]=-4(a-1)(a+4)≤0,

    ∴h(x)≤0,

    ∴f′(x)=

    -ax2+4x-(a+3)

    x2≤0,

    ∴f(x)在区间(0,+∞)上单调递减.

    ∴当a≥1时,f(x)在[[1/2],2]上单调递减,∴f(x)在[[1/2],2]上的最大值为f([1/2])=-4ln2+[3/2]a+6,

    g′(x)=2ex-4,令g′(x)=0,得x=ln2.

    当x∈[[1/2],ln2)时,g′(x)<0,∴g(x)单调递减,x∈(ln2,2]时,g′(x)>0,∴g(x)单调递增,

    ∴g(x)在[[1/2],2]上的最小值为g(ln2)=4-4ln2+2a,

    由题意可知-4ln2+[3/2]a+6>4-4ln2+2a,解得a<4,

    又a≥1,∴实数a的取值范围为[1,4).

    点评:

    本题考点: 利用导数求闭区间上函数的最值;利用导数研究函数的极值.

    考点点评: 本题考查了利用导数研究函数的单调性、求函数的极值与最值,考查存在性问题,属于中档题.