由:Sn=0.5*(an+1/an)整理得2an*Sn=an^2+1
因为 an=Sn-S(n-1)
所以 2[sn-s(n-1)]*Sn=[sn-s(n-1)]^2+1
故 Sn^2-S(n-1)^2=1,所以Sn成等差数列
S(n-1)^2-S(n-2)^2=1
.
S3^2-S2^2=1
S2^2-S1^2=1
连加:Sn^2-S1^2=n-1
又 S1=a1,2an*Sn=an^2+1,S1>0
故 S1=1
所以Sn^2=n,Sn=√n,(1)
S(n-1)=√(n-1),(2)
(1)-(2),得:an=√n-√(n-1) (√为根号)