(1)∵AB=AD,∠BAC=∠DAC,AE=AE,
∴△BAE≌△DAE(角边角)
∴∠ABE=∠ADE.
又∵∠ABE+∠EBC=∠ABC,
∠APD+∠ADE=180°-∠DAB
∠ABC+∠DAB=180°
∴∠APD=∠EBC
(2)做辅助线:过D点做DG⊥AB交点为G.
1/2·AP·DG=1/4·AB·DG
∴AP=1/2·AB
即P在AB中点时,△ADP的面积等于菱形ABCD面积的四分之一.
(1)∵AB=AD,∠BAC=∠DAC,AE=AE,
∴△BAE≌△DAE(角边角)
∴∠ABE=∠ADE.
又∵∠ABE+∠EBC=∠ABC,
∠APD+∠ADE=180°-∠DAB
∠ABC+∠DAB=180°
∴∠APD=∠EBC
(2)做辅助线:过D点做DG⊥AB交点为G.
1/2·AP·DG=1/4·AB·DG
∴AP=1/2·AB
即P在AB中点时,△ADP的面积等于菱形ABCD面积的四分之一.