证明
an=Sn-S(n-1)
=100n-n^2-[100(n-1)-(n-1)^2]
=100n-n^2-[100n-100-(n^2-2n+1)]
=100n-n^2-(-n^2+102n-101)
=100n-n^2+n^2-102n+101
=-2n+101
a1=99
{an}是首顶是99,公差是-2的等差数列
证明
an=Sn-S(n-1)
=100n-n^2-[100(n-1)-(n-1)^2]
=100n-n^2-[100n-100-(n^2-2n+1)]
=100n-n^2-(-n^2+102n-101)
=100n-n^2+n^2-102n+101
=-2n+101
a1=99
{an}是首顶是99,公差是-2的等差数列