a=180-b-c
(a+b)/2=(180-c)/2=90-c/2
所以原式=tan(90-c/2)+tanc/2
=sin(90-c/2)/cos(90-c/2)+sin(c/2)/cos(c/2)
=cos(c/2)/sin(c/2)+sin(c/2)/cos(c/2)
=[cos²(c/2)+sin²(c/2)]/sin(c/2)/cos(c/2)
=1/(1/2*sinc)
=2/sinc
a=180-b-c
(a+b)/2=(180-c)/2=90-c/2
所以原式=tan(90-c/2)+tanc/2
=sin(90-c/2)/cos(90-c/2)+sin(c/2)/cos(c/2)
=cos(c/2)/sin(c/2)+sin(c/2)/cos(c/2)
=[cos²(c/2)+sin²(c/2)]/sin(c/2)/cos(c/2)
=1/(1/2*sinc)
=2/sinc