∫√ (1+Inx) / (xInx) dx
let
y= lnx
dy = (1/x) dx
∫√ (1+Inx) / (xInx) dx
=∫ [√ (1+y) / y] dy
let
y= (tana)^2
dy = 2(tana)^2(seca)da
∫ [√ (1+y) / y] dy
=∫ (seca / (tana)^2).2(tana)^2(seca)da
=2∫ (seca)^2 da
= 2tana+ C
= 2√y + C
=2√lnx + C
∫√ (1+Inx) / (xInx) dx
let
y= lnx
dy = (1/x) dx
∫√ (1+Inx) / (xInx) dx
=∫ [√ (1+y) / y] dy
let
y= (tana)^2
dy = 2(tana)^2(seca)da
∫ [√ (1+y) / y] dy
=∫ (seca / (tana)^2).2(tana)^2(seca)da
=2∫ (seca)^2 da
= 2tana+ C
= 2√y + C
=2√lnx + C