A=1/2[m^4+n^4+(m+n)^4]
=1/2[(m^2+n^2)^2+(m^2+2mn+n^2)^2-2m^2n^2]
=1/2[2(m^2+n^2)^2+4mn(m^2+n^2)+2m^2n^2]
=(m^2+n^2)^2+2mn(m^2+n^2)+m^2n^2
=(m^2+mn+n^2)^2
是一个完全平方式
A=1/2[m^4+n^4+(m+n)^4]
=1/2[(m^2+n^2)^2+(m^2+2mn+n^2)^2-2m^2n^2]
=1/2[2(m^2+n^2)^2+4mn(m^2+n^2)+2m^2n^2]
=(m^2+n^2)^2+2mn(m^2+n^2)+m^2n^2
=(m^2+mn+n^2)^2
是一个完全平方式