f(x)=2cosxcos(x-π/6)-√3sin^2x+sinxcosx
=2cosxcos(x-π/6)-√3sin^2x+sinxcosx
=2cosx(√3/2cosx+1/2sinx)-√3in^2x+sinxcosx
=√3cos^2x+sinxcosx-√3sin^2x+sinxcosx
=√3(cos^2x-sin^2x)+2sinxcosx
=√3cos2x+sin2x
=2(√3/2cos2x+1/2sin2x)
=2sin(2x+π/3)
最小正周期T=2π/2=π
f(x)=1
2sin(2x+π/3)=1
x∈[0,π]
∴2x+π/3=5π/6
x=π/4