(1)a^5+a+1
=a^5-a²+a²+a+1
=a²(a³-1)+(a²+a+1)
=a²(a-1)(a²+a+1)+(a²+a+1)
=(a²+a+1)(a³-a²+1)
(2)用十字相乘法法,把y作为常数,x 做降幂排列.
原式=2x2+(y-4)x+(-y2+5y-6)
=2x2+(y-4)x+[-(y2-5y+6)]
=2x2+(y-4)x+[-(y-2)(y-3)]
作十字分解,如下:
1 y-3
2 -y+2
则:
原式=[1x+(y-3)][2x+(-y+2)]
=(x+y-3)(2x-y+2)
验算,结果=2x2-xy+2x+2xy-y2+2y-6x+3y-6
=2x2+xy-y2+5y-6=题目的式子 无误
(3)设x^4-x^3+4x^2+3x+5
=(x^2+ax+1)(x^2+bx+5)
=x^4+(a+b)x^3+(ab+b)x^2+(5a+b)x+5
根据对应项系数相等,得
a+b=-1 ①
ab+b=4 ②
5a+b=3 ③
由①③得a=1,b=-2
代入②中,成立
∴x^4-x^3+4x^2+3x+5=(x^2+x+1)(x^2-2x+5)