f(x)=cos(x+π/6)-cos(x-π/6)+SQR(3)*cosx
=cosxcosπ/6-sinxsinπ/6-cosxcosπ/6-sinxsinπ/6+SQR(3)*cosx
=-sinx+SQR(3)cosx=-2sin(x-π/3)
因为x∈[-π/2,0],所以(x-π/3)∈[-5π/6,-π/3],
所以函数最小值为-2*(-1/2)=1
f(x)=cos(x+π/6)-cos(x-π/6)+SQR(3)*cosx
=cosxcosπ/6-sinxsinπ/6-cosxcosπ/6-sinxsinπ/6+SQR(3)*cosx
=-sinx+SQR(3)cosx=-2sin(x-π/3)
因为x∈[-π/2,0],所以(x-π/3)∈[-5π/6,-π/3],
所以函数最小值为-2*(-1/2)=1