(1)S2-S1=[a(n+1)-a1]+[a(n+2)-a2]……+[a2n-an]=nd+nd+...+nd=n^2*d
类似得S3-S2=n^2*d.得证
(2)把a(n+1)=a1*q^n,a(n+2)=a2*q^n,...,a2n=an*q^n相加得
S2=(a1+a2+...+an)*q^n=S1*q^n
同理S3=S2*q^n
所以S1,S2,S3成等比数列
(1)S2-S1=[a(n+1)-a1]+[a(n+2)-a2]……+[a2n-an]=nd+nd+...+nd=n^2*d
类似得S3-S2=n^2*d.得证
(2)把a(n+1)=a1*q^n,a(n+2)=a2*q^n,...,a2n=an*q^n相加得
S2=(a1+a2+...+an)*q^n=S1*q^n
同理S3=S2*q^n
所以S1,S2,S3成等比数列