建议用——作差比较法
换底公式,
log3(2) - [log2(3) - 1] = log3(2) - 1/log3(2) + 1
换元,令u=log3(2),则0<u<1
原式 = u - 1/u + 1 = (u²-u+1)/u
而,u²-u+1 = (u-1/2)² + 3/4 >0
∴log3(2) - [log2(3) - 1] = (u²-u+1)/u > 0
即,log3(2) > [log2(3) - 1]
建议用——作差比较法
换底公式,
log3(2) - [log2(3) - 1] = log3(2) - 1/log3(2) + 1
换元,令u=log3(2),则0<u<1
原式 = u - 1/u + 1 = (u²-u+1)/u
而,u²-u+1 = (u-1/2)² + 3/4 >0
∴log3(2) - [log2(3) - 1] = (u²-u+1)/u > 0
即,log3(2) > [log2(3) - 1]