原题即:x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5;
对原式进行分解,得
原式=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x^2y^2+4y^4)
=(x+3y)(x^2-y^2)(x^2-4y^2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y)
现在我们假定原式会等于33,即
(x+3y)(x+y)(x-y)(x+2y)(x-2y)=33=1×3×11.①
讨论:
显然,①式左端5个因式均不为0,且①式左端的5个分解式中,两两不等,也就是5个因式互不相等,否则的话,例如:x+3y=x+y,将推出y=0,而当y=0时,①式变形为:
x^5=33,则x无整数解.
因此,①式左端的5个因式分别代表了5个不同的整数,而①式右端的33只能分解成3个不同的因数:1、3、11,所以①式左右两端不对应,换句话说,也就是:
对任何整数x和y,x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5的值都不会等于33.
已经帮你搞定,您就安心开学吧!