在三角形ABC中,角BAC=a,角ACB=k,AP平分角BAC.M,N分别是AB,AC延长线上的点BP,CP分别平分角M

3个回答

  • 如果我没画错的话

    由题意得∠MBP=∠CBP,∠BCP=∠NCP,∠BAP=∠CAP=a/2

    ∴∠BPC=360°-∠ABP-∠BAC-∠ACP

    =360°-(180°-∠PBM)-a-(180°-∠PCN)

    =(1/2)∠MBC+(1/2)∠BCN-a

    =(1/2)(∠BAC+∠ACB)+(1/2)(∠BAC+∠ABC)-a

    =(1/2)(∠ACB+∠ABC)

    =(1/2)(180°-∠BAC)

    =90°-0.5a

    ∠PBD=180°-∠BDP-∠BPD

    =90°-(∠BPC-∠APC)

    =90°-(90°-0.5a-(∠PCN-∠PAC))

    =90°-(90°-0.5a-((180-k)/2)-a/2)

    =90°-0.5k

    答:∠BPC=90°-0.5a

    ∠PBD==90°-0.5k

    下面是几何画板