如果我没画错的话
由题意得∠MBP=∠CBP,∠BCP=∠NCP,∠BAP=∠CAP=a/2
∴∠BPC=360°-∠ABP-∠BAC-∠ACP
=360°-(180°-∠PBM)-a-(180°-∠PCN)
=(1/2)∠MBC+(1/2)∠BCN-a
=(1/2)(∠BAC+∠ACB)+(1/2)(∠BAC+∠ABC)-a
=(1/2)(∠ACB+∠ABC)
=(1/2)(180°-∠BAC)
=90°-0.5a
∠PBD=180°-∠BDP-∠BPD
=90°-(∠BPC-∠APC)
=90°-(90°-0.5a-(∠PCN-∠PAC))
=90°-(90°-0.5a-((180-k)/2)-a/2)
=90°-0.5k
答:∠BPC=90°-0.5a
∠PBD==90°-0.5k
下面是几何画板