tanB=cos(C-B)/〔sinA+sin(C-B)〕=cos(C-B)/〔sin(B+C)+sin(C-B)〕
tanB=(cosBcosC+sinBsinC)/(2sinCcosB)
2sinBsinC=cosBcosC+sinBsinC
cosBcosC-sinBsinC=0
cos(B+C)=0
tanB=cos(C-B)/〔sinA+sin(C-B)〕=cos(C-B)/〔sin(B+C)+sin(C-B)〕
tanB=(cosBcosC+sinBsinC)/(2sinCcosB)
2sinBsinC=cosBcosC+sinBsinC
cosBcosC-sinBsinC=0
cos(B+C)=0