这个结论知道不:r(A±B)≤r(A)+r(B).利用它,得r(A)=r(A+B-B)≤r(A+B)+r(B),即r(A+B)≥r(A)-r(B),设αβ′=B,r(B)=1,r(A)=n,命题就得证了.
求解一道高等代数关于矩阵的秩的证明题
这个结论知道不:r(A±B)≤r(A)+r(B).利用它,得r(A)=r(A+B-B)≤r(A+B)+r(B),即r(A+B)≥r(A)-r(B),设αβ′=B,r(B)=1,r(A)=n,命题就得证了.