令 f【x+(-x)】=f(x)+f(-x)
f【x+(-x)】=f(0)
f(x)=f(0)+f(x)
f(0)=f(0)+ f(x) +f(-x)
移项可得 f(x)+f(-x)=0
即
-f(x)=f(-x)
2.
f(x)为 奇函数
f(12)=-f(-12)
=f-(-6+ -6)
=-f(-3+ -3)-f(-3+ -3)
即-4f(-3)
=-4a
令 f【x+(-x)】=f(x)+f(-x)
f【x+(-x)】=f(0)
f(x)=f(0)+f(x)
f(0)=f(0)+ f(x) +f(-x)
移项可得 f(x)+f(-x)=0
即
-f(x)=f(-x)
2.
f(x)为 奇函数
f(12)=-f(-12)
=f-(-6+ -6)
=-f(-3+ -3)-f(-3+ -3)
即-4f(-3)
=-4a