①由y=(x²-x+n)/(x²+1)得
yx^+y=x^-x+n,
(y-1)x^+x+y-n=0,x,y∈R,
∴1-4(y-1)(y-n)>=0,
∴y^-(1+n)y+n-1/41时b 1+2b 2+···+(n-1)b< -1>n=﹙n+9﹚﹙9/10﹚^﹙n-2﹚-﹙100/9﹚,(2)
(1)-(2),nbn=(9/10)^(n-2)*[9(n+10)/10-(n+9)]
=(-n/10)(9/10)^(n-2),
∴bn=(-1/10)(9/10)^(n-2).
n=1时上式也成立.
②cn=[(1+n)/10](9/10)^(n-2),
c/cn=9(n+2)/[10(n+1)]=(9/10)[1+1/(n+1)],↓,
9(n+2)>=10(n+1),n